Die NASA-Libelle auf ihrem Weg zu Saturns Riesenmond Titan könnte Chemie enthüllen, die zum Leben führt

Libelle auf Titans Oberfläche

Künstlerische Darstellung der Libelle auf der Oberfläche von Titan. Unter Ausnutzung der dichten Atmosphäre und der geringen Schwerkraft von Titan wird Dragonfly Dutzende von Orten auf der eisigen Welt erkunden, Proben nehmen und die Zusammensetzung der organischen Oberflächenmaterialien von Titan messen, um die Bewohnbarkeit der Umgebung von Titan zu charakterisieren und den Fortschritt der prähistorischen Chemie zu untersuchen. Bildnachweis: NASA/Johns Hopkins APL

Ein neuer[{” attribute=””>NASA mission to

Titan’s abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and the potential habitability of an extraterrestrial environment.

DraMS will allow scientists back on Earth to remotely study the chemical makeup of the Titanian surface. “We want to know if the type of chemistry that could be important for early pre-biochemical systems on Earth is taking place on Titan,” explains Dr. Melissa Trainer of NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

NASA Dragonfly Rotorcraft Lander

This illustration shows NASA’s Dragonfly rotorcraft-lander approaching a site on Saturn’s exotic moon, Titan. Credit: Johns Hopkins/APL

Trainer is a planetary scientist and astrobiologist who specializes in Titan and is one of the Dragonfly mission’s deputy principal investigators. She is also lead on the DraMS instrument, which will scan through measurements of samples from Titan’s surface material for evidence of prebiotic chemistry.

To accomplish this, the Dragonfly robotic rotorcraft will capitalize on Titan’s low gravity and dense atmosphere to fly between different points of interest on Titan’s surface, spread as far as several miles apart. This allows Dragonfly to relocate its entire suite of instruments to a new site when the previous one has been fully explored, and provides access to samples in environments with a variety of geologic histories.

At each site, samples less than a gram in size will be drilled out of the surface by the Drill for Acquisition of Complex Organics (DrACO) and brought inside the lander’s main body, to a place called the “attic” that houses the DraMS instrument. There, they will be irradiated by an onboard laser or vaporized in an oven to be measured by DraMS. A mass spectrometer is an instrument that analyzes the various chemical components of a sample by separating these components down into their base molecules and passing them through sensors for identification.

Saturn Moon Titan NASA Cassini Spacecraft

The colorful globe of Saturn’s largest moon, Titan, passes in front of the planet and its rings in this true color snapshot from NASA’s Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute

“DraMS is designed to look at the organic molecules that may be present on Titan, at their composition and distribution in different surface environments,” says Trainer. Organic molecules contain carbon and are used by all known forms of life. They are of interest in understanding the formation of life because they can be created by living and non-living processes.

Mass spectrometers (see video below) determine what’s in a sample by ionizing the material (that is, bombarding it with energy so that the atoms therein become positively or negatively charged) and examining the chemical composition of the various compounds. This involves determining the relationship between the weight of the molecule and its charge, which serves as a signature for the compound.

Was tun Sie, wenn Sie eine Probe von einem anderen Planeten haben und herausfinden möchten, ob sie ein bestimmtes Molekül enthält … vielleicht sogar eines, das zeigt, dass der Planet Leben unterstützen könnte? Wenn Wissenschaftler mit einer solchen Situation konfrontiert werden, verwenden sie ein erstaunliches Werkzeug: das Massenspektrometer. Es erledigt die harte Arbeit der Materialtrennung und ermöglicht Wissenschaftlern, sich eine Probe genau anzusehen und zu sehen, was sich darin befindet. Erfahren Sie mehr über dieses Tool in diesem Video der Solar System Exploration Division der NASA Goddard.

DraMS wurde zum Teil von demselben Team bei Goddard entwickelt, das die Instrumentenreihe Sample Analysis at Mars (SAM) an Bord des Curiosity-Rover entwickelt hat. DraMS wurde entwickelt, um nach Materialproben von der Oberfläche von Titan zu suchen vor Ortmit erprobten Techniken in[{” attribute=””>Mars with the SAM suite.

Trainer emphasized the benefits of this heritage. Dragonfly’s scientists did not want to “reinvent the wheel” when it came to searching for organic compounds on Titan, and instead built on established methods that have been applied on Mars and elsewhere. “This design has given us an instrument that’s very flexible, that can adapt to the different types of surface samples,” says Trainer.

DraMS and other science instruments on Dragonfly are being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which manages the mission for NASA and is designing and building the rotorcraft-lander. The team includes key partners at Goddard, the French space agency (CNES, Paris, France), which is providing the Gas Chromatograph Module for DraMS that will provide an additional separation after leaving the oven, Lockheed Martin Space, Littleton, Colorado, NASA Ames Research Center at Moffett Federal Airfield in California’s Silicon Valley, NASA Langley Research Center, Hampton, Virginia, NASA Jet Propulsion Laboratory, Pasadena, California, Penn State University, State College, Pennsylvania, Malin Space Science Systems, San Diego, California, Honeybee Robotics, Brooklyn, New York, the German Aerospace Center (DLR), Cologne, Germany, and the Japan Aerospace Exploration Agency (

Leave a Comment